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Asymptotic Pion-Pion Elastic Scattering Amplitude* 
ROBERT L. ZIMMERMAN 

University of Washington, Seattle, Washington 
(Received 29 April 1963) 

The elastic scattering amplitude for neutral pseudoscalar particles is calculated in the limit of high energies 
and small momentum transfer. We have kept all inelastic channels in the intermediate state and exchanging 
only two particles. This resulting expression gives the upper and lower bounds on the total cross section 
b/s<<r(s)<a/se, where €>0 and a, b are real constants. A special case of this elastic scattering amplitude 
is shown to be of the form suggested on the basis of the Regge theory of complex angular momentum. If 
the slope of the Regge trajectory is taken to be G £ ^ / 5 0 we obtain a total cross section which decreases very 
slowly <r(s) = (&/167r)s~°-005, where k is some real constant. 

I. INTRODUCTION 

ONE of the most important features of strongly 
interacting particles at high energies is that the 

elastic scattering is almost completely concentrated in 
a forward cone. The total cross section appears to be
come smooth.1 Although pion-pion interactions have 
not been observed at high energies, it is expected that 
they might also have similar characteristics. 

A theoretical analysis, based on these considerations, 
has been performed for the pion-pion elastic scattering 
amplitude, using the Mandelstam representation of the 
scattering amplitude and taking into account all in
elastic channels in the intermediate states. By keeping 
only the minimum number of particles exchanged, we 
obtain the asymptotic behavior of the amplitudes for 
small momentum transfer as the energy approaches 
infinity. This approach is based on the strip-approxima
tion proposal of Domokos,2 whereby one keeps only the 
asymptotic terms and then solves a Riemann-Hilbert 
boundary-value problem for the Mellin transform of the 
amplitude. The calculation will be carried out with the 
neglect of isospin. At high energies this model and the 
neglect of isospin appear to be experimentally sug
gested,3 so that the present assumption may be quite 
realistic for pion-pion scattering, 

The model developed here will allow us to obtain a 
general form of the scattering amplitude at large 
energies. From this one can obtain an upper and lower 
bound on the total cross section. We shall also show 
that a special case of the scattering amplitude has the 
same form as the one suggested by many authors on 
the basis of the Regge theory of complex angular 
momentum.4 

In Sec. II, the integral equation for the scattering 
amplitude is derived keeping only the minimum number 
of particles exchanged. The asymptotic form of the 

* Supported in part by the U. S. Atomic Energy Commission 
under contract A. T. (45-1)1388, program B. 

1 K. Winter, CERN Report 61-22 (unpublished). 
*G. Domokos, Zh. Eksperim. i Teor. Fiz. 42, 538 (1962) 

[translation: Soviet Phys.—JETP 15, 377 (1962)]. 
3 V. S. Barashenkov, Uso. Fiz. Nauk 72, 53 (1960) [translation: 

Soviet Phys.—Usp. 3. 689 (1961)]. 
4 See, for example, B. M. Udgaonkar, Phys. Rev. Letters 8, 346 

(1962). 
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integral equation will be given in Sec. III. We shall 
show that if no subtractions are needed in the dispersion 
relations the asymptotic integral equation has no solu
tion. Using one subtraction and relating the subtraction 
constant to the total cross section, we obtain a general 
form of the elastic scattering amplitude. A special case 
of this amplitude is the one suggested on the basis of 
the Regge theory of complex angular momentum. Using 
the generalized form of the scattering amplitude it is 
shown that the total cross section must decrease as a 
power of the energy. Also, upper and lower bounds are 
given on the total cross section. Finally, using a special 
case of the amplitudes we obtain a cross section that is 
very nearly constant. 

II. APPROXIMATE INTEGRAL EQUATION 

Consider the following reactions illustrated by Fig. 1 
and given by 

I T(PI)+T(P2) -» 7r(P3)+7r(P4) , 

II ^ ( P O + T K - P ^ T K P S H T K - P ^ , 

III 7r(P1)+7r(~P3)^7r(-P2)-f-7r(P4), 

and let 
(h=c==mT==l), 

s=-(Pi+P2)\ 
/= - (P 1 -P 4 ) 2 , 

# = = - ( P 1 _ P 3 ) 2 j 

4=s+t+u, 
where Pi is the four-momentum of the ith particle. 

FIG. 1. Diagram de
scribing the pion-pion elas
tic scattering amplitude. 

P, P2 
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The analytic properties of the amplitude may be where the range of the integral is again over the region 
written as follows6: in which the radical is positive. 

Equation (6) is exact for 4 < / < 1 6 . We shall assume 
. ._ f°° C™ Aat{s ,t )dt ds that it is valid for all t, i.e., that the contribution outside 

^2 J / (s'-.s)(t'—A of the strip is small in Eq. (6) for large s. 

> A8U(s',u')ds'du' HI. ASYMPTOTIC SOLUTION i r rAsj 
IT2 J4 J A ( V -

1 f4 (/__<r)(^'_.w) To find the asymptotic solution of Eq. (6) we will 
follow the same procedure as used by Domokos.2 

1 f00 r00 Aui(u\t')du'dt' Expanding Eq. (6) for large s, we obtain 

r2 U {uf-u){t'-t) lmA8(s,t) 

where the real spectral functions Axy(x,y) satisfy the l/t-4\^2 r°° r"> dsids26(x-l)A8(sht)Aa*(s2,t) wnere tne real spectral iunctions Axy{x,y) satisiy tne 1//—4\1/2 r00 /•* 
relations = - ( ) / / 

7 \ 4 / J A J A Ast = Aus = Atu. (2) 

For convenience we will sometimes write A(s,t,u) where 
= A(s,t). Z—Z\Z<L 

The absorptive part of the amplitude can be expressed 
as 

0 2 - l ) 1 / 2 ^ 2 

+o(ImAs(s,t))y (7) 

Cfe2—i)(^i2—1)31/2 

1 f00 Axy(x,y')dy' 1 r™ A xz(x9z')dz' Application of the Mellin transformation 
Ax(x,y,z) = - + - / . (3) 

7r J A y—y TJA Z—Z /•«> 
M,"(f(s))= / f(s)s^ds (8) 

We also have the following relations among the absorp- J 4 
tive parts, 

to Eq. (7) yields the following: 
Ax(x,y) = Q if x < 4 , 

A.(s,t) = At(s,t) = Au(s,t), (4) M,»(ImAs(s,t)) 

Ax(s,t) = Ax(s,4-s-t), where x=s,t, or u. l/t-4\1'* 2 2 " - 1 r ( i ) r ( l - J u ) i/t-4\ "2 22"-ir(f)r(i-Ju) 
- " ~T, Z —\Ms(A.(sM* (9) 

x\ t J Ti-u) t-4)" 
These equations only hold for no subtractions but can ir\ t / 
be generalized to the case of subtractions in the usual _ 4 w . . e 

° 5 for ix real and /x< 1. T{x) is a gamma function. 
W To obtain the integral equation for the spectral func- ^ H e r e t h e f o l l o

f7
 n o t a t i o n h a s b e e n u s e d ' W e d e f i n e 

tion keeping only two-particle intermediate states, we t h e n o t a t l o n a s Allows: 
use the unitarity condition in channel I I I for 4 < / < 1 6 , <b(z)c2.\l/(z) as z > £.. 
inelastic processes in channel I I being forbidden. The ^ 
unitarity condition then has the form,6 ^ = ^(2)+0 ty(z)) as z->z0. 

A , t)==
1(t~4\m f f dz1dz2A(zht)A*(z2,t) Consider the analytic properties of Ms»(As{s,t)). We 

u^ ' 4\ t J J J (\-\-2zz z —z 2—z 2—z2)112' s e e ^ a t *n ^ e * P^ a n e ^or R^/x<l it is an analytic func-
(5) tion with the same analytic properties as As(s,t). The 

left-hand cut of A8(s,t) gives a vanishing contribution 
where Au(s,t) = ImA(s,t) in channel I I I and zt=l for large s. Therefore, asymptotically in s we can write 
+2si/(t—4:). The range of the integral is over the region M^A^t)) in the following form: 
in which the radical is positive. 

From the analytic properties of A(s,t) and the fact Ms
fX(As(s,t)) 

that I I I ^ . - I I I L I . , we obtain , , i ( l a [ M A A t ( s / ) ) ] 

InU.M °^J, Jwlj +F-'i,h m 

zf j / / i 2 s \ i, ; a K 2 , ) where Pn-i(t) is an arbitrary polynomial of order n~-1 

i \ t ) J J (z2—2zziz2+zi2+z2
2—1)1/2' i n / . For real M we have that 

* S. Mandelstam, Phys. Rev. 115, 1741 (1959). ImM9^A9(s9t))^Ma^mAa(s9t)). (11) 
6 F. M. Kuni and I. A. Terentiv, Zh. Eksperim. i Teor. Fiz. 40, 

866 (1961) [translation: Soviet Phys.-—JETP 13, 607 (1961)]. Consider first the case where there are no subtractions 

file:///-/-2zz
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and let 

Bfat)-
1 

Ms(At(s,t)) 

Then from Eq. (9) for real n and M < 1 > we obtain 

(12) 

/ / _4vi /2 2 2M-i r ( i ) r ( i - - M ) 
I m ^ ( ^ ) ~ - • ~ . (13) 

\ t J (/-4)«7rr(f-M) 
Thus B(ix,t) has the same analytic properties as 
Ma^A^Sjt)) except that the poles of Ms(A8(s,t)) will 
be the zeros of B(ii,t) and vice versa. The zeros of 
M8*(A8(s,t)) are similar to the C.D.D. ambiguity7 and 
will be assumed not to exist. Therefore, we have that 

r(i)r(i-,o 
J5( ju,/)^-2 2^- 1-

Consider the case of t—0. Then 

Msli(As(sfi))= ~w sin(TTM), where 0<Re/x< 1. (16) 

The inverse transformation of Eq. (16) does not exist. 
Since the total cross section is proportional to A8(sfi) 
this implies that the total cross section does not exist. 
This demonstrates that at least one subtraction is 
needed. 

Now consider the case of one subtraction, 

Bfa,t)£ 
t 

IT J A 

' ImB{p,t')dt' 

/ ' ( / ' - /) 
-/GO. (17) 

^r(f-M) 

X 

The subtraction term /(ju) is dependent on where the 
subtraction is made. If this is taken at t = 0, we have a 
very simple interpretation of f(jj). In our notation 
A (Sji) is normalized in such a way that 

r00 / ^ - 4 \ 1/2 dtr 

(t'-^Yit'-t) 
(14) 

and for K 0 and 0<Re ju< l 

As(sfi) = Irm4 (sfl) = sa(s)/167r, 

and, therefore, 

1 1 1 

(18) 

^ =Ms»(As(s,0)) = 
/GO Bfafl) 16TT 

s"a(s)ds. (19) 

7T Sm(7TM) 

2*^(-H-4)1-"iF1(i, §-,.;*; 10 
(15) Hence, f()i) is simply related to the cross section. 

From Eqs. (12), (13), and (17) we obtain 

Ms"(Aa(s,t))c 
22*-1r(§)r(i-M)(^-4)M 

xra-zi)**1" L ' "" xr(f) 

r rOi)r(f-M) 
cot5r(l+^) —— \-i -/GO 

•<2^>r(i)r(i-jB)r(i+/i)(4-0*-" ̂ i(f, §-„; I; it) 
fw xT( f )4 i 3/2 

/ > 4 

*<0 (20) 

where /x is real and — K R e ^ < l for t^O. 
We now have an expression for the Mellin transform of the absorptive part of the elastic amplitude for real n 

and can analytically continue for all /x. 
First let us consider Eq. (20) for the case t<0, 

Ms»(As(s,t))c~-
"4"-1 / i /(4-0 i~" 

. 37r2 sin(7r/x) 
^i(*,f-Ai;*;iO-/(M)] . (21) 

From Eq. (21) and with the aid of the convolution 
theorem for Mellin transformations8 we can find the 
Mellin transform of A{s,t). 

From the fixed t dispersion relation and crossing 
symmetry we have that 

ds' 

where P0(t) is the subtraction constant. For large s and 
fixed /, Eq. (22) may be expressed asymptotically as 

r00 ds' r 1 I n 
/ —A8(s',t)\ 

J4 s' Ls'—s s ' + s d 

r dsf 

A(s,ipx- I — 4 , ( s ' 
T J 4 S 

(23) 

1 r00 ds' 
A(s,t) = - / —Aa(s'y 

T J 4 S* 

Ls'-s *'• 

s+t-4 

The convolution theorem states that if for given 
functions $i(z) and $2(2) the Mellin transform, <j)i(s) 
and fais), exists and 

\+Po(t), (22) 
+s+t-4J 

7 L. Castfflejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101, 
453 (1956). 

8 E. C. Titchmarsh, Theory of Fourier Integrals (Oxford Uni
versity Press JNew York, 1937), Chap. II. 

then 

z\dp 
(24) 
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where <j>(s) is the Mellin transform of $(z). Apphcation The last term in Eq. (25) can easily be evaluated to 
of this theorem to Eq. (23) gives give 

TTilfa.O* (^) M'^y»'4i3 
sA(st)\r / 1 \ / 1 \-i = ~ — C ( - D + ( - l ) " ] , (27) 

„M,(±™YMJ -±)-U.J ~)1,(2S) 
\ s SL Ms/ M+s/J forO<ReM<l. With this result Eq. (25) becomes 

where we have used the following notation sA(s,t)\ sAa(s,t)\ r(—1)+(— l)"~i 
M.A )^MA 1 , (28) 

( A(s,t)\ f» A(s,t) \ s / \ s /I sinxM J 
I = / ds **-> . (26) 

s / Jo s a n d by means of Eq. (21) we obtain 

- D + (-l)*] 
M oMC4 (s t))c^~ (29) 

[ 4 ^ V ( 4 - / ) ^ / 3 T T 2 ] 2^(1, f-M; f; I 0 - / ( M ) sinTTM ' 

Since the problem had no solution for zero subtractions To carry this out we will use the following theorem10: 
we have the restriction on /x: — KRe/x<0 [cf. Eq. Theorem. If F(lnt) is a / function10 with the asymp-
(16)]. From this restriction, we can obtain an upper to tic property 
and lower bound on the amplitude. We have w x . „ x T „ x „ 

F F(t)c^A (\nt) aL(ln/) for t —> oo , 
b<\A(s,t)\<as, (30) . A . , . ^ A 

where A is any arbitrary constant, Rea:> —1, and for 
where a and b are some real constants and /<0 and s is />/o>0 the continuous, positive function L(t) satisfies 
very large. This condition gives us the following bounds the condition 
on the total cross section: r / i A 

L(a mt) 
a's-^ais)^', (31) —TT > 1 f o r *->0° a n d <*>0, 

L(t) 
where a' and b' are some real constants. 

The most general form of the asymptotic behavior of t h e n there exists Mt,o
8(Ht)) = f(s) for Res>0. The 

the total cross section which satisfied the inequality function f(s) is singular at s=0 and can be asymptoti-
of Eq. (31) is c a^y represented as 

<j(s)~ks-e-i(lns)«L(\m), (32) AT(a+l) / 1 \ 
where 0<— /3< 1 and k is a real constant. L(lns) is -^ s<x+x \SJ 
called a "langsam wachsende Funktion" and has the 
following properties9: This theorem is only valid for values of a< — 1; how-

. ever, since we will not need an explicit expression for 
(i) hm (ln^L(lns) = 0 foranye>0, the case of cK - 1 we will exclude it here. 

Using this theorem and Eqs. (19) and (32) gives the 
(ii) lim (ln^)-€L(ln^) = 0 foranye>0, (33) subtraction constant 

L(a\ns) k r ( H - l ) , . . 
(hi) lim = 1 for any a> 0. / ( M ) " 1 ^ M I , (34) 

LQns) 16TT (^-/z)a+1 ~ 
To obtain the most general form of the subtraction for a> — 1. 

constant we must take the Mellin transform of Eq. (32). Equation (29) now becomes 

V|8-V 

-D+( - l ) " ] 
M3,o"(.A(s,i))^ . (35) 

[4"-V(4-0 i-"/37r2] 2F1(f, f-M; f; K>-[16ir(/3-M)"+1 s i nM/* r ( a+ l )£ ( l / /S - / i ) ] 
for a > — 1. 

9 See, for example, J. Karamata, Mathematica (Cluj, Rumanien) 4, 45 (1930), or G. Doetsch, Theorie und Anwendung der Laplace-
Transformation (Julius Springer Verlag, Berlin, 1937). 

10 G. Doetsch, Handbuch der Laplace-Transformation (Verlag Berkhauser, Basel, 1950), Band I, Theorem 7, p. 460. 



2708 R O B E R T L . Z I M M E R M A N 

/ i PLANE 

Re fJL 

FIG. 2. Contours in the y. plane for the inverse 
Mellin transformation. 

We will now show that the total cross section will 
asymptotically go to zero at least as fast as a power 
of the energy, i.e., 

<r(s) = 0(s~*), where e > 0 . (36) 

Therefore, a logrithmic decrease or anything slower is 
forbidden. 

To show this we will use Eqs. (20a), (21), and (34). 
First consider the special case A s(sfi)c^(ks/16) [i.e., 
0-(s),-*oo—£]. For this example we have a = 0, /3= — 1, 
£ (1 / (0 - /* ) )= 1. 

Equation (21) becomes 

M8»(A8(sfl)) = 
1 

where JJL< — 1, and 

MS(A.(s,t)) = 

1 6 x ( - l - M ) 

— sin(7r/z)(&/167r) 

(^/967r2)+(l+/x)sin7TM : 

(37) 

(38) 

for t sufficiently small and — K / x < 0 . 
The conditions on \x in Eqs. (37) and (38) mean that 

the path of integration for the inverse transformation 
must cross the real axis where the inequalities are 
satisfied, i.e., the path of integration must cross real JJL 
axis somewhere between — K j u < 0 f o r / < 0 and /*< — 1 
for / = 0 (see Fig. 2), where e and e' are greater than zero. 

The absorptive part of the amplitude is 

As(s,t) = — / Ms^As(s,t))s-^dpi, (39) 
2iri Jy 

where 

Y—Yo for 2=0 

= Y* for / < 0 . 

The only way that the absorptive amplitude can 

exist and satisfy these conditions is for the contour y0 

to be homo topic to yt relative to the /x plane for t<0. 
In order to see if this is true we must look at Eqs. (37) 
and (38) to see how the singularities behave as t becomes 
finite. 

Equation (37) shows that we have a simple pole at 
M = - l for t=0. 

Equation (38) shows that for / < 0 the pole about 
ju= —1 splits into two poles, one moving on the left 
and the other to the right as shown in Fig. 3. 

Therefore, yo cannot be homotopic to yt relative to 
JJL for / < 0 and hence, the conditions are not satisfied. 
The same argument still holds for a = l , 2---n. For 
a> — 1 and a noninteger we have a branch point which 
does not move with /, so y0 is still not homotopic to yt-
Also if Z(—l/(jLt+l))?^l it will introduce an additional 
singularity at /JL= — 1 which will again hinder this con
dition £cf. Eq. (34)]. To study the type of singularities 
for a< — 1 in Eq. (21) we make use of the following 
identity. 

Let $(z) be a function whose Mellin transform is 
<£i(s); then the Mellin transform fais) of (lnz)~n$(z) is 

H(s)--
—00 J —00 

<l>l(Sn)dSn' "dSi, (40) 

dn(t>2(s)/dsn=(l>1(s). (41) 

For a< — 1 and n sufficiently large (i.e., n> \a\ — 1), 
we have that the ^th derivative of the subtraction 
constant is of the form 

dn 

(-LV. k r(x+i) 

dnn\f(fi)J 16w ( / 3 - M ) X + 1 
(42) 

where X> — 1 . From Eq. (42) we see that for the case 
a< — 1 we again have the same type of singularities as 

fl PLANE 

SIMPLE POLE AT 

M = - , + y | j i L 
r v 96 7T3 

/ 

Re/i 

SIMPLE POLE AT ^ = > | - , / ^ M I 

FOR t SUFFICIENTLY SMALL 

FIG. 3. Position of singularities in the y. plane for ^ 0 . 
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for a> — 1 in Eq. (21) and the same arguments as given 
above prevent yo from being homotopic to yt relative to 
the fx plane for /<0 and a< — 1. 

We have now shown that 

b/s<a(s)<as % (43) 

where e>0 and a, b are some real constants. 
Keeping in mind the above inequalities we are ready 

to take the inverse transformation of Ms^{A{s,t)). If 
we take Eq. (35) and keep only the lowest order terms 
for t sufficiently small we have 

A(s,i)c^-

X 

[ l+( -U<] ft 

sin(7r/3) I6ir 

/£r(a+l) f t (ms) 2 a + 1 

h 
96TT3 sin(7r0) 

-s-P(\ns)«L()xLs) 

L\\ns)+0(t2) (44) 

where 0< — /3< 1 and a> — 1. 
Notice that the Regge behavior is a special case of 

Eq. (35). If we assume, as in the Regge case, that the 
partial-wave amplitude is meromorphic in the I plane 
with only simple poles, this is equivalent to our case of 
having only simple poles in the fx plane. In this special 
case we get the amplitude 

where 

and 

fe s-P+at 
A(s,t)c^- _ _ [ ! + ( - 1 ) * ] , 

16TT sin7r/3 

sin(7r/3)967r3 

O<0< + 1. 

(45) 

(46) 

(47) 

We see from Eq. (46) that the slope of the Regge 
trajectory a for small t is strongly dependent on the 
asymptotic power of the total cross section. Hence, if 
we know the slope of the trajectory we know the 
asymptotic cross section or vice versa. If we take the 
case of a~l /50, this implies that fi^—0.995 giving 

^0.995+«/50r^_j_/ '_n-0.995~] 

A (s,t)~ , (48) 
16TT sin(7r0.995) 

and 
a(s) = (k/16ir)sr°'0o*. (49) 

The relation between the trajectory a and the asymp

totic power ft seems to give surprisingly excellent agree
ment with experiment.11 

IV. CONCLUSION 

In principle, the spectral function can also be obtained 
from Eq. (20) for J>4; however, the arguments will be 
the same as above and no new restrictions on the ampli
tudes will arise that have not already appeared for the 
case of /<0. However, it is interesting to note that 
whenever the subtraction constant f(p) is meromorphic 
in the /* plane with only simple poles [i.e., a(s) 
£z.(k/l(yn)s&~\, we will get a spectral function of the form 

A,(s,t)c~s«W, (50) 

where a(t) is a complex function of /. This form of the 
spectral function is just the one suggested by many 
authors on the basis of the Regge theory of complex 
angular momentum. 

The general form of the amplitude in Eq. (35) easily 
lends itself to a study of the general properties of the 
amplitude. From this amplitude we have obtained in 
Eq. (43) an upper and lower bound on the total cross 
section, 

b/s<a(s)<a/s€, 

where e>0 and a, b are some real constants. 
With the additional assumption that /(/x) has only 

simple poles, Eqs. (48) and (49) give remarkable agree
ment with experiments. This amplitude will give a total 
cross section which is very nearly constant and the 
elastic cross section will be almost completely concen
trated in a forward cone. 

In this same elastic approximation to the unitarity 
condition, the amplitude for the pion-nucleon scattering 
is given in terms of the pion-pion amplitude and can 
now likewise be solved in terms of it. Finally the 
nucleon-nucleon scattering amplitude is given in terms 
of the pion-nucleon amplitude. 
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